Skalierbare Kapazitätsprognose in großen Datennetzen:
Früherkennung von Engpässen in der Netzinfrastruktur

Niklas Wilcke, David Bröhan, Christoph Ölschläger

Potenzielle Engpässe lassen sich in komplexen Netzwerken kaum ohne Big-Data-Methoden entdecken und beheben. Mit Batch- und Stream-Processing können Admins diese Engpässe erkennen, bevor es kneift. Ad-hoc-Prognosen mit Jupyter-Notebook können dabei als leichter Einstieg helfen.

iX-TRACT

  • Mit einem Jupyter-Notebook und komfortablen Visualisierungsbibliotheken lassen sich schnell übersichtliche Ad-hoc-Prognosen für den Datenverkehr in Netzen erstellen.
  • Um steigende Datenmengen in komplexen Netzwerken zu verarbeiten, führt kaum ein Weg an Batch- und Stream-Processing-Systemen vorbei.
  • Eine skalierbare Lösung aus Elasticsearch, Apache Kafka, Apache Flink und ­Python ermöglicht einen differenzierten Blick auf die zukünftige Entwicklung eines Netzwerks.

Das in großen Netzwerken übertragene Datenvolumen wächst mit der voran­schreitenden Digitalisierung rasch, besonders bei Providern. Die Betreiber versuchen Überlastungen mit einem kontinuierlichen Netzausbau entgegenzuwirken. Verbindungen in geschäftskritischen Netzen sind meist re­dundant. Als Kriterium für eine Überlastung dient daher häufig die 50-Prozent-Kapazitätsgrenze: Solange sie nicht überschritten wird, kann beim geplanten oder ungeplanten Ausfall einer Verbindung die verbleibende Hälfte den gesamten Datenverkehr bewältigen, ohne bestehende Service Level Agreements zu gefährden.

Das Ziel besteht in einer Planungshilfe für große Providernetze, die einen bedarfsgerechten Netzausbau unterstützt und dabei die 50-Prozent-Grenze beachtet. Zur Netzwerkplanung eignen sich Methoden aus dem Bereich Machine Learning. ML-Modelle dienen einerseits der Ano­malieerkennung, andererseits können sie aber insbesondere Kapazitätsengpässe basierend auf den historischen Daten pro­gnostizieren. Im vorliegenden Beispiel kommt dafür Prophet zum Einsatz, eine Bibliothek von Facebook zur…

Sie wollen weiterlesen, kein Problem.
Gerne bieten wir Ihnen die Möglichkeit sich den Artikel per E-Mail zusenden zu lassen. Füllen Sie dafür einfach folgendes Formular aus.
(Falls das Kontaktformular nicht angezeigt wird, laden Sie bitte die Seite neu)

iX Artikel – Skalierbare Kapazitätsprognose in großen Datennetzen
Ich stimme den Datenschutzbestimmungen und Nutzungsbedingungen zu. Weitere Informationen finden sie unter,  https://uniberg.com/privacy-policy/
Geben Sie den Captcha ein